On the trace anomaly of the energy-momentum tensor from the one-loop effective Lagrangian in QED

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L711
(http://iopscience.iop.org/0305-4470/21/13/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 16:34

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the trace anomaly of the energy-momentum tensor from the one-loop effective Lagrangian in QED

W Dittrich and M Sieber
Institut für Theoretische Physik der Universität Tübingen, Auf der Morgenstelle 14, 7400 Tübingen, Federal Republic of Germany

Received 21 April 1988

Abstract

Using the results on one-loop corrections to the effective Lagrangian in QED for constant prescribed electromagnetic fields, we demonstrate a new way to derive the trace anomaly in spinor and scalar QED.

The past few years have witnessed an enormous interest in anomalies-mostly chiral anomalies-in various field theories. The methods for evaluating them have become increasingly sophisticated, from Schwinger's treatment in his 1951 paper [1] to Zumins's differential geometric approach [2] or Fujikawa's path integral treatment of the fermionic measure under chiral transformation [3], to mention just a few [4]. We will not be interested in this subject in the present letter, but want to concentrate on the equally important trace anomaly which was discussed years ago, e.g. in [5], with the result that in spinor qED:

$$
\begin{equation*}
-\left\langle T_{\mu}^{\mu}(x)\right\rangle=m\langle\bar{\psi}(x) \psi(x)\rangle+\frac{e^{2}}{24 \pi^{2}} F_{\mu \nu}(x) F^{\mu \nu}(x) \tag{1}
\end{equation*}
$$

We want to explicitly compute $\left\langle T_{\mu}{ }^{\mu}\right\rangle$ in terms of external electromagnetic fields and thus identify $\langle\bar{\psi} \psi\rangle$ as well as the anomaly which is obtained by $\lim _{m \rightarrow 0}\left\langle T_{\mu}{ }^{\mu}\right\rangle$. The calculation is performed using knowledge of the heat kernel for the Dirac field in an external constant electromagnetic field. Among various approaches given, e.g. in [6], we are going to present still another derivation of the heat kernel, which is based on a wKв approximation.

The Lagrangian we are dealing with is given by ($\sigma_{\mu \nu}=\frac{1}{2} \mathrm{i}\left[\gamma_{\mu}, \gamma_{\nu}\right]$)

$$
\begin{equation*}
\mathscr{L}=\frac{1}{4} \dot{\eta}_{\mu} \dot{\eta}^{\mu}-i e \dot{\eta}^{\mu} A_{\mu}(\eta)-\frac{1}{2} e \sigma_{\mu \nu} F^{\mu \nu} . \tag{2}
\end{equation*}
$$

Then the transition amplitude (in Euclidean time t) between events $\eta(0)=y$ and $\eta(t)=x$ can be written in terms of a Feynman path integral as

$$
\begin{equation*}
\langle x, t \mid y, 0\rangle=K(x, t ; y, 0)=\int[\mathrm{d} \eta(\tau)] \exp \{-S[\eta(\tau)]\} \tag{3}
\end{equation*}
$$

where the classical action is simply

$$
S[\eta(\tau)]=\int_{0}^{t} \mathrm{~d} \tau \mathscr{L}(\eta, \dot{\eta} ; \tau)
$$

For constant fields, the path integral can be determined directly or by calculating the relevant Seeley coefficients, or-even more simply-by a classical wкв approximation which is exact for the constant-field case:

$$
\begin{equation*}
K(x, t ; y, 0)=\frac{D^{1 / 2}(x, y ; t)}{(4 \pi t)^{2}} \exp [-S(x, y ; t)] \tag{4}
\end{equation*}
$$

with the Van Vleck determinant

$$
\begin{equation*}
D(x, y ; t)=\left|\operatorname{det}\left(-2 t \frac{\partial^{2} S}{\partial x^{\mu} \partial y^{\nu}}\right)\right| \tag{5}
\end{equation*}
$$

and the classical action:
$S=-\mathrm{i} e \int_{y}^{x} \mathrm{~d} \xi^{\mu} A_{\mu}(\xi)+\frac{1}{4}(x-y)^{\mu} e F_{\mu}{ }^{\rho}(\cot e F t)_{\rho \nu}(x-y)^{\nu}-\frac{1}{2} e \sigma_{\mu \nu} F^{\mu \nu} t$
where $\xi^{\mu}(\tau)$ denotes a straight line between x and y.
The Van Vleck determinant then yields

$$
D^{1 / 2}=\exp \left(-\frac{1}{2} \operatorname{Tr} \ln \frac{\sin (e F t)}{e F t}\right) .
$$

The final result reproduces Schwinger's proper-time calculation:

$$
\begin{align*}
K(x, t ; y, 0)= & \exp \left(\mathrm{i} e \int_{y}^{x} \mathrm{~d} \xi^{\mu} A_{\mu}(\xi)\right) \frac{1}{(4 \pi t)^{2}} \\
& \times \exp \left(-\frac{1}{2} \operatorname{Tr} \ln \frac{\sin (e F t)}{e F t}\right) \exp \left[\frac{1}{2} e \sigma F t-\frac{1}{4}(x-y)^{\top} e F(\cot e F t)(x-y)\right] \tag{7}
\end{align*}
$$

where the entire gauge dependence in the first factor has been isolated. The diagonal part, $x=y$, of (7) can be used to compute the effective action in QED:
$\Gamma^{(1)}=\int \mathrm{d}^{4} x \mathscr{L}^{(1)}=\frac{1}{2} \int_{0}^{\infty} \frac{\mathrm{d} t}{t} \exp \left(-m^{2} t\right) \operatorname{Tr} \int \mathrm{d}^{4} x K(x, t ; x, 0)+$ constant
which, when renormalised, leads to the effective Lagrangian [6] (for a constant magnetic field in the z direction):

$$
\begin{gather*}
\mathscr{L}^{(1)}[B]=-\frac{1}{32 \pi^{2}}\left\{\left[2 m^{4}-4 m^{2}(e B)+\frac{4}{3}(e B)^{2}\right]\left[1+\ln \left(m^{2} / 2 e B\right)\right]\right. \\
\left.+4 m^{2}(e B)-3 m^{4}-(4 e B)^{2} \zeta^{\prime}\left(-1, m^{2} / 2 e B\right)\right\} \tag{8}
\end{gather*}
$$

Now there is a very close relation between the effective Lagrangian $\mathscr{L}^{(1)}$ and the trace of the energy-momentum tensor:

$$
\begin{equation*}
\left\langle T_{\mu}^{\mu}(x)\right\rangle=m \frac{\partial \mathscr{L}^{(1)}(x)}{\partial m} . \tag{9}
\end{equation*}
$$

The result of the mass differentiation is

$$
\begin{align*}
\left\langle T_{\mu}^{\mu}\right\rangle(B)=- & \frac{m}{32 \pi^{2}}\left\{\left[8 m^{3}-8 m(e B)\right]\left[1+\ln \left(m^{2} / 2 e B\right)\right]+(2 / m)\left[2 m^{4}-4 m^{2}(e B)+\frac{4}{3}(e B)^{2}\right]\right. \\
& \left.+8 m(e B)-12 m^{3}-(4 e B)^{2} \frac{\partial}{\partial m} \zeta^{\prime}\left(-1, m^{2} / 2 e B\right)\right\} . \tag{10}
\end{align*}
$$

When the Hurwitz ζ function $\zeta(z, q)$ is differentiated,

$$
\begin{aligned}
\frac{\partial}{\partial q} \zeta^{\prime}(z, q)_{z=-1} & =\left.\frac{\partial}{\partial z}\left(\frac{\partial}{\partial q} \zeta(z, q)\right)\right|_{z=-1} \\
& =\ln \Gamma(q)-\frac{1}{2} \ln 2 \pi+q-\frac{1}{2}
\end{aligned}
$$

we end up with

$$
\begin{align*}
\left\langle T_{\mu}{ }^{\mu}\right\rangle(B)=- & \frac{1}{12 \pi^{2}} e^{2} B^{2}-\frac{m^{4}}{4 \pi^{2}} \ln \left(\frac{m^{2}}{2 e B}\right)+\frac{m^{2}}{4 \pi^{2}} e B \ln \left(\frac{m^{2}}{2 e B}\right)+\frac{m^{4}}{4 \pi^{2}} \\
& +\frac{e B m^{2}}{2 \pi^{2}}\left[\ln \Gamma\left(\frac{m^{2}}{2 e B}\right)-\frac{1}{2} \ln 2 \pi\right] . \tag{11}
\end{align*}
$$

This is also the result of the calculation of the integral

$$
\begin{equation*}
\left\langle T_{\mu}{ }^{\mu}\right\rangle(B)=\frac{e B m^{2}}{4 \pi^{2}} \int_{0}^{\infty} \frac{\mathrm{d} z}{z^{2}} \exp \left(-\frac{m^{2}}{e B} z\right)\left(z \operatorname{coth} z-1-\frac{1}{3} z^{2}\right) \tag{12}
\end{equation*}
$$

Now observe that

$$
\begin{equation*}
\lim _{m \rightarrow 0}\left\langle T_{\mu}{ }^{\mu}\right\rangle=-\frac{1}{12 \pi^{2}} e^{2} B^{2} \tag{13}
\end{equation*}
$$

which, when written covariantly, yields ($B^{2} \rightarrow \frac{1}{2} F_{\mu \nu} F^{\mu \nu}$)

$$
\begin{equation*}
\lim _{m \rightarrow 0}\left\langle T_{\mu}{ }^{\mu}\right\rangle=-\frac{1}{24 \pi^{2}} e^{2} F_{\mu \nu} F^{\mu \nu}=-\frac{2 \alpha}{3 \pi} \frac{1}{4} F_{\mu \nu} F^{\mu \nu} \tag{14}
\end{equation*}
$$

which is the desired result.
Going back to our original equation (1), we can also identify
$\langle\bar{\psi} \psi\rangle(B)=\frac{m^{3}}{4 \pi^{2}} \ln \frac{m^{2}}{2 e B}-\frac{e B m}{4 \pi^{2}} \ln \frac{m^{2}}{2 e B}-\frac{m^{3}}{4 \pi^{2}}-\frac{e B m}{2 \pi^{2}}\left[\ln \Gamma\left(\frac{m^{2}}{2 e B}\right)-\frac{1}{2} \ln 2 \pi\right]$.
If we change from a constant B field in the z direction to a constant E field ($B \rightarrow(1 / \mathrm{i}) E$), we obtain a real and imaginary part for $\left\langle T_{\mu}{ }^{\mu}\right\rangle(E)$:

$$
\begin{aligned}
\operatorname{Re}\left\langle T_{\mu}{ }^{\mu}\right\rangle(E) & =\frac{1}{12 \pi^{2}} e^{2} E^{2}-\frac{m^{4}}{4 \pi^{2}} \ln \frac{m^{2}}{2 e E}+\frac{m^{2} e E}{8 \pi}+\frac{m^{4}}{4 \pi^{2}}+\frac{e E m^{2}}{2 \pi^{2}} \operatorname{Im} \ln \Gamma\left(\mathrm{i} \frac{m^{2}}{2 e E}\right) \\
\operatorname{Im}\left\langle T_{\mu}{ }^{\mu}\right\rangle(E) & =-\frac{m^{4}}{8 \pi}-\frac{m^{2}}{4 \pi^{2}} e E \ln \frac{m^{2}}{2 e E}-\frac{e E m^{2}}{2 \pi^{2}}\left[\operatorname{Re} \ln \Gamma\left(\mathrm{i} \frac{m^{2}}{2 e E}\right)-\frac{1}{2} \ln 2 \pi\right] \\
& =-\frac{m^{4}}{8 \pi}+\frac{e E m^{2}}{4 \pi^{2}} \ln \left(2 \sinh \frac{\tau m^{2}}{2 e E}\right) .
\end{aligned}
$$

As a consistency check with Schwinger's formula for pair production, we obtain
$\operatorname{Im}\left\langle T_{\mu}^{\mu}\right\rangle(E)=m \frac{\partial}{\partial m} \operatorname{Im} \mathscr{L}^{(1)}(E)=-\frac{m^{2} e E}{4 \pi^{2}} \sum_{M=1}^{\infty} \frac{1}{M} \exp \left(-\frac{\pi m^{2}}{e E} M\right)$.
Similar relations hold for scalar QED where, with the aid of

$$
\begin{equation*}
\mathscr{L}_{0}^{(1)}(B)=\frac{1}{64 \pi^{2}}\left[\left[2 m^{4}-\frac{2}{3}(e B)^{2}\right]\left(1+\ln \frac{m^{2}}{2 e B}\right)-3 m^{4}-(4 e B)^{2} \zeta^{\prime}\left(-1, \frac{m^{2}+e B}{2 e B}\right)\right] \tag{17}
\end{equation*}
$$

we find

$$
\begin{gather*}
\left\langle T_{\mu}{ }^{\mu}\right\rangle(B)=2 \frac{\partial \mathscr{L}_{0}^{(1)}(B)}{\partial \ln m^{2}} \\
\left\langle T_{\mu}{ }^{\mu}\right\rangle=\frac{m}{64 \pi^{2}}\left\{-8 m^{3}-\frac{4}{3} \frac{(e B)^{2}}{m}+8 m^{3} \ln \frac{m^{2}}{2 e B}-16 m(e B)\left[\ln \Gamma\left(\frac{m^{2}+e B}{2 e B}\right)-\frac{1}{2} \ln 2 \pi\right]\right\} \tag{18}
\end{gather*}
$$

where the anomaly is contained in the $(e B)^{2}$ term.
Of course, we can also obtain the next-to-leading term in the radiatively corrected formula [7], for spin $\frac{1}{2}$:

$$
\begin{equation*}
\left\langle T_{\mu}{ }^{\mu}\right\rangle_{m=0}=-\beta(\alpha) \frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad \beta(\alpha)=\frac{2}{3}\left(\frac{\alpha}{\pi}\right)+\frac{1}{2}\left(\frac{\alpha}{\pi}\right)^{2}+\cdots \tag{19}
\end{equation*}
$$

by incorporating our results for the two-loop calculation $\mathscr{L}^{(2)}$ extensively outlined in [6].
One of the authors (WD) would like to thank K Johnson (MIT) and S Adler (IAS) for refreshing his memory on the history of anomalies.

References

[1] Steinberger J 1949 Phys. Rev. 761180
Schwinger J 1951 Phys. Rev. 82664
Adler S L 1969 Phys. Rev. 1772426
Bell J S and Jackiw R 1969 Nuovo Cimento A 6047
[2] Zumino B et al 1984 Nucl. Phys. B 239477
[3] Fujikawa K 1980 Phys. Rev. D 212848
[4] Dittrich W and Reuter M 1986 Selected Topics in Gauge Theories (Lecture Notes in Physics 244) (Berlin: Springer)
[5] Coleman S and Jackiw R 1971 Ann. Phys., NY 67552
Crewther R J 1972 Phys. Rev. Lett. 281421
Chanowitz M S and Ellis J 1972 Phys. Lett. 40B 397
[6] Dittrich W and Reuter M 1985 Effective Lagrangians in QED (Lecture Notes in Physics 220) (Berlin: Springer)
[7] Adler S L, Collins J C and Duncan A 1977 Phys. Rev. D 151712

