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J. Phys. A: Math. Gen. 21 (1988) L711-L714. Printed in the U K  

LETTER TO THE EDITOR 

On the trace anomaly of the energy-momentum tensor from 
the one-loop effective Lagrangian in QED 

W Dittrich and M Sieber 
Institut fur Theoretische Physik der Universitat Tubingen, Auf der Morgenstelle 14, 7400 
Tubingen, Federal Republic of Germany 

Received 21 April 1988 

Abstract. Using the results on one-loop corrections to the effective Lagrangian in QED for 
constant prescribed electromagnetic fields, we demonstrate a new way to derive the trace 
anomaly in spinor and scalar QED. 

The past few years have witnessed an enormous interest in anomalies-mostly chiral 
anomalies-in various field theories. The methods for evaluating them have become 
increasingly sophisticated, from Schwinger’s treatment in his 1951 paper [ 13 to Zumino’s 
differential geometric approach [2] or Fujikawa’s path integral treatment of the fer- 
mionic measure under chiral transformation [3], to mention just a few [4]. We will 
not be interested in this subject in the present letter, but want to concentrate on the 
equally important trace anomaly which was discussed years ago, e.g. in [5], with the 
result that in spinor QED: 

We want to explicitly compute ( T,,) in terms of external electromagnetic fields and 
thus identify (I,&) as well as the anomaly which is obtained by lim,,o(T,p). The 
calculation is performed using knowledge of the heat kernel for the Dirac field in an 
external constant electromagnetic field. Among various approaches given, e.g. in [6], 
we are going to present still another derivation of the heat kernel, which is based on 
a WKB approximation. 

The Lagrangian we are dealing with is given by (uFV = ti[ y,, y y ] )  

2’ = f 7j, 7j” - ie?jpA, (7) - 1 eu,,F””. (2) 
Then the transition amplitude (in Euclidean time t )  between events ~ ( 0 ) = y  and 
T ( t )  = x can be written in terms of a Feynman path integral as 

( x ,  t lY, 0) = K ( x ,  r ;  Y ,  0) = j [d77(7)1 exP{-SET(.r)l) (3) 

where the classical action is simply 

S[77(7)1= jo‘ d72(T ,  7j; 7). 
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For constant fields, the path integral can be determined directly or by calculating the 
relevant Seeley coefficients, o r -even  more simply-by a classical WKB approximation 
which is exact for the constant-field case: 

with the Van Neck determinant 

D(x, y; t) = det -2t- I ( ax”:yu)I 

and the classical action: 

S = -ie I,’ dS”A, ( 6 )  + a(x - y)”eF,P(cot eFr)pu(x - y)  - 4 ea,, F@”t 

where (”(7) denotes a straight line between x and y. 
The Van Vleck determinant then yields 

sin( eFt) 
eFt 

-fTrln- 

The final result reproduces Schwinger’s proper-time calculation: 

K(x, t ;y ,O)=exp ie dSpA,(S) - t c L4:t)’ 

exp[beaFt -a(x-y)TeF(cot eFt)(x-y)] (7) 
sin( eFt) 

x exp (- f Tr In - 
eFt 

where the entire gauge dependence in the first factor has been isolated. The diagonal 
part, x = y, of (7) can be used to compute the effective action in QED: 

I lom :exp(-m2t) Tr d4xK(x,  t; x, O)+constant I r(1) = d4X9P(1) =$ 

which, when renormalised, leads to the effective Lagrangian [6] (for a constant magnetic 
field in the z direction): 

{[2m4-4m2(eB) +$(eB)’][ 1 +ln(m2/2eB)] 
1 

327~’ 
@’)[ B] = - - 

+ 4m2( e B )  - 3m4 - (4eB)’I’( -1, m2/2eB)}. (8)  

Now there is a very close relation between the effective Lagrangian 3”) and the trace 
of the energy-momentum tensor: 

The result of the mass differentiation is 

(T,’”)(B) = - -{[8m3 -8m(eB)][l +ln(m2/2eB)]+(2/m)[2m4-4m’(eB)+$(eB)’] m 
327~’ 

a 
+8m(eB)- 12m3-(4eB)’-L’(-1, am m2/2eB)}. (10) 
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When the Hurwitz 6 function l ( z ,  q )  is differentiated, 

= ln r(q) -f  In 27r + q - f 
we end up with 

(11) 
+p eBm2 [In r (g) - 4  In 2T3.  

This is also the result of the calculation of the integral 

(12) 
eBm2 “ d z  m2 

(T’,@)(B) = 7 Io 2 exp( -z z )  ( z  coth z - 1 -$.z2). 

Now observe that 

lim ( T,,) = -- e2B2 
m+O 12T2 

which, when written covariantly, yields ( B2 + 4 F,,F’”’) 

(14) 
2 a  1 

e 2 F  Ffi‘=--- FFY Fp” lim ( T,”) = -- 
m+O 2 4 r 2  ” 3 T  4 

1 

which is the desired result. 
Going back to our original equation ( l ) ,  we can also identify 

(15) 
m3 m2 eBm m2 m3 ;?[ (2;i) ] <i$N B )  = 2 ln 2eB - 2 ln 2eB - 2 - - I n r  - -41n27r . 

If we change from a constant B field in the z direction to a constant E field ( B  + ( l / i )  E ) ,  
we obtain a real and imaginary part for ( TWp)( E ) :  

Im In r( i &) 1 m4 m2 m2eE m4 eEm2 Re( T,”)( E) = - e E -- In -+ - +-+- 
12T2 477’ 2eE 8 7  4 ~ ’  2 r 2  

m4 m2 
8 T  4 T 2  

Im(T’p)(E)=----eE 

- - -- 

As a consistency check with Schwinger’s formula for pair production, we obtain 

a 
am 

Im(T,”)(E)=m-IIm2’(’’(E)=-- 

Similar relations hold for scalar QED where, with the aid of 

=@,‘I( B )  =- - 3 m 4 -  (4eB)25’ 
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we find 

m m2 
( T p  )-647r2 3 m  2eB * - - { -8 m - OZ + 8 m In - - 1 6 m ( el?) [In r (e) - 4 In 2 7r ] } 

(18) 

where the anomaly is contained in the (eB)' term. 

formula [7], for spin 4: 
Of course, we can also obtain the next-to-leading term in the radiatively corrected 

by incorporating our results for the two-loop calculation 2(2) extensively outlined in [6]. 

One of the authors (WD) would like to thank K Johnson (MIT) and S Adler (IAS) 
for refreshing his memory on the history of anomalies. 
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